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Abstract 2. Analysis

An LU implicit multigrid algorithm is developed
to calculate three-dimensional compressible viscous flows.

This scheme solves the full three-dimensional Reynolds-

Averaged Navier-Stokes equation with a two equation k - e
model of turbulence. The flow equations are integrated

by an efficient, diagonally inverted, LU implicit multigrid
scheme while the k- • equations are solved, uncoupled

from the flow equations, by a block LU implicit algorithm.

The flow equations are solved within the framework of the

multigrid method using a four grid level W-cycle, while the
k - s equations are iterated only on the finest grid. This

treatment of the Reynolds-Averaged Navier-Stokes equa-

tions proves to be an efficient method for calculating three-

dimensional compressible viscous flows.

1. Introduction

As the availability of larger and more powerful comput-

ers increases, so will the attention being directed towards

computing complex three-dimensional compressible viscous

flows. At present the most sucessful approach has been to

solve the Thin-Layer Navier-Stokes equations with an alge-
braic turbulence model. Most notable has been the work of

Pulliam and Steger 1 and their highly sucessful ARC codes.

Attempts to produce efficient numerical schemes for
the calculation of compressible viscous flows have led to

the Diagonalized ADI scheme of Chaussee and Pulliarn 2

and more recently to the multigrid Runge-Kutta scheme of

Jayaram and Jameson. 3 As emphasis increasingly focuses
upon calculating complex three-dimensional flows, the need

to numerically solve the Reynolds-Averaged Navier-Stokes

equations efficiently is correspondingly apparent.

The present work deals with the development of an ef-
ficient LU implicit multigrid scheme for the numericaI- solu-

tion of the Reynolds-Averaged Navier-Stokes equations and

the two equation k - • turbulence model. The Reynolds-

Averaged Navier-Stokes equations, which for mathematical

closure require the modelling of the Reynolds stress tensor,

are solved by the Diagonally Inverted LU Implicit Multi-

grid scheme developed by Yokota, Caughey, and Chima. 4

A Boussinesq eddy-viscosity formulation is used to model

the Reynolds stress term, where the turbulent viscosities
are calculated from a standard high Reynolds number k -

model.

The three-dimensional Reynolds-Averaged Navier-

Stokes equations, with the Boussinesq eddy-viscosity for-

mulation, are written in divergence form and then trans-
formed from the Cartesian coordinate system (x,y, z) to

the generalized system {_, r/, f). The resulting equations
can be written:
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for which the production rate of the turbulence kinetic en-

ergy is defined as
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The turbulence modelling constants axe chosen to be the

standard Launder and Spalding 9 values of

C,, : 0.09 tl = 1.44 t2 - 1.92

Ok = 1.0 a, = 1.3

and were never altered during the course of this work.

(Isotropy is assumed since C_, is a scalar constant rather

than a non-constant vector quantity.) The transformed

Navier-Stokes and k - e equations are discretized by a finite

volume formulation that approximates the spatial differ-

ences as a net flux across the faces of each mesh cell. Global

conservation and the admission of possible uniform flow so-

lutions are insured by evaluating both the inviscid and vis-

cous flux vectors on the faces of the boundary-conforming

mesh cells. This procedure requires that the flow and k-

variables, viscous stresses, and flux-embedded geometric

quantities be defined on the faces of the mesh cells during

the flux evaluations, although it is the cell-averaged flow

and k - _ variables that are calculated during the time and

spatial marching. The viscous stresses and geometric quan-

tities are evaluated directly on the cell faces, while the flow

and k - • variables are averaged over values found in adja-

cent cells. The unsteady equations can be discretized into

an implicit approximation that, when written in a linearised

delta form, produces a numerical scheme whose steady state

solutions are independent of the time step size used in the

time marching. The computational effort required to con-

struct this implicit approximation is kept at a minimum

by treating only the inviscid fluxes. The delta form, pro-

duced by linearizing the changes in the inviscid flux vectors

through a Taylor series expansion about a time level n, can

be written for the flow equations as follows:

[I + #,At(6,A + 6,B + 6,C)] AW_,.k-" =

g "-At($¢(._- _,,) + 8,,(0 - _,,} + $_(/7 - "))ok (4)

where

and At is the time step size; 0 < #i <_ 1 is a parameter

governing the degree of implicitness; 6 and $ are cell- and

face-centered central differences; I is the identi_y matrix;

and A, B, and C axe the inviscid flux Jacobian matrices

relative to the vectors J_, G, and /7. The implicit form of

the k - e equations can be written as follows:

_n+ .,",(*,Ak. +  .Bk, +  ,ck. - =

-_t(8¢Pk. + 8,dk. + 8,#k. - "- Sk,)_Sk (5)

and

-- Wkl r

where Ak_, Bk,, and Ck_ are the inviscid flux Jacobian

matrices relative to the inviscid terms found in the vectors

Gk,, and /Jk_; and E_:, is the Jacobian matrix relative

to the source vector Sk_-

3. Artificial Dissipation

The finite volume formulation reduces to a central dif-

ference approximation on a uniform grid and therefore re-

quires the addition of explicit artificial dissipation terms



2) Upper Sweep

: A_,._ (11)[i+ _,A_(sta, + s.+B2+ 6,+e_)]A_,_k -"

A similar explicit sweep, but in directions opposite to those
taken in the lower sweep, is needed to solve this system of

equations. The resulting flow field corrections are then used

to update the flow field.

The LU factorization requires the solution of two block

triangular operators each of which, through back substitu-

tion, can be reduced to simple 5x5 matrix systems at every
mesh cell. These reduced systems can be written:
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A similar analysis for the k - • equations can be used

to write the following 2x2 matrix equations:
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5, Diagonally Inverted LU Factorization

Th_ LU factorisation of the k - * equations produces
simple 2x2 matrix systems which can be inverted alge-

braically, while the matrix systems associated with the

flow equations axe diagonally inverted using the similarity
transformation _ that produces the following diagonal ma-

trix:

Q-l(a + B + C)Q =

which has elements

A11 =A:_=Aas= U+V+W

_,,= u + v + w - _x/_?+ g + _

_ = u + v + w + _ + _ + q

Aii = 0 when i _ 3"

where

q2 = u2 + 112-4-w 2

l_ = _+r/_+C_

la = G+_/-'+C,

and c is the local speed of sound. This similarity transfor-

mation, for a local time step defined as:

eft

At=
(IAI + IBI + lCl)

where Gft is the Courant number used in the time marching,

can be used to transform the lower and upper sweeps into

scalar equations with the following vector components (rn =

1, ..., 5)
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2) Upper Sweep
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T. Steady State Calculations

The calctllation of steady state solutions is made more

efficient by using local time-stepping and the multigrid

method.

Local time-stepping is used to optimize the time step

throughout the flow field. A locally varying time step size,

based on a constant Courant number, is used to create a

warped time integration that can accelerate the calculation

to a steady state without affecting the steady state solution.

These time steps axe defined identically for both the flow

and k - e equations, although the value of the Courant

numbers used in their evaluation may vary.

The multigrid method is incorporated into the Diago-

nally Inverted LU scheme to accelerate the removal of low

frequency errors from the flow solution and thus increase

the efficiency of the time-marching procedure. Following

the work of Jameson, 16 the flow solver is used to smooth

out high frequency errors resolvable on any current grid

level (h), while the multigrid method is used to eliminate

low frequency errors through a sequence of flow calculations

on coarser grids (2h, 4h, 8h,...) . The multigrid sequencing

used is the four-level W- cycle shown below

h

÷h

Coarse grid boundary conditions are identical to those used

on the fine grid with the exception of the inflow/outflow

conditions which axe updated only on the fine grids. The

Reynolds-Averaged Navier-Stokes equations are solved on

the finest grid while only the Euler fluxes are evaluated on

the coaxse grids. Coarse grid residuals are kept smooth by

adding only a constant coefficient second difference artifi-

cial dissipation term {the nonlinear blended terms axe used

only on the fine grid}. This treatment attempts to limit

the amount of high frequency errors reintroduced into the

flow field by the upward interpolation of the coarse grid

corrections. The flow solver, in this case the Diagonally In-

verted LU scheme, is invoked only once on each grid level

and only before transfering the flow field to the next coarser

grid. The multigrid cycle defined above requires approxi-

mately 1.32 work units of computational effort, where work

units are normalized by a single Navier-Stokes calculation

on the finest grid. The k - e equations axe solved only on

the finest grid and axe not accelerated with the rmlltigrid

method. Preliminary attempts at multigridding the k -

equations proved to be less efficient than simply solving

these equations only on the finest grid.

8. Results

Numerical results axe presented to illustrate the Di-

agonally Inverted LU scheme's ability to calculate three-

dimensional compressible viscous flows and the convergence

acceleration produced by the multigrid method.

Turbomachinery calculations were performed on H-

type grids consisting of 96x24x24 mesh cells in the through-

flow, blade-to-blade, and radial directions, respectively.

These grids were generated using a modified version of the

GRAPE code 17 originally developed by Sorenson. Is All cal-

culations were performed on a CRAY X-MP, where a calcu-

lation consisting of 211 work units required approximately

1.5 million words of memory and 40 minutes of CPU time.

The test case used to evaluate the LU scheme is the

Annular Cascade designed and extensively tested at NASA

Lewis. 19'2° The computational grid shown in Figure 1 is

based on the full annular ring of 36 core turbine stator

vanes. The geometry is a 38.10 mm high untwisted blade

of constant profile with an axial chord of 38.23 mm. The

stator has a tip diameter of 508 mm and a 0.85 hub-to-tip

radius ratio. Mesh cells found immediately adjacent to solid

walls axe centered at distances 0.002 of an axial chord away,

which correspond to a value of Y+ _ 60 for the following

flow calculations.

Experimental test conditions of ambient axial inflow

and a 0.65 hub-static to inlet-total pressure ratio produce

a flow field with mean radius inlet and exit critical velocity

ratios of 0.231 and 0.778 respectively. To match the up-

stream flow conditions (an inflow Mach number of 0.211),

the nonrotating (ROT --- 0} calculations were run with a

0.665 hub-static to inlet-total pressure ratio (PR = 0.665).

Figure 2 shows the convergence history of the Annu-

lax Cascade calculation (with nmltigrid} where a drop of

3.5 orders of magnitude in the flow field error was pro-

duced within 200 work units. The residual was reduced

from an initial RES1 = 0.169x101 to a final value of

RES2 = 0.572x10 -3 (0.9628 average rate of convergence).

A Courant number of Cn = 6 was used in the solution of the

flow equations while a Cn --- 4 was used in the ]c - e equa-

tions (no attempt to optimize these numbers was made}.

The resulting flow field is fully subsonic and is com-

pared with experimental data at three spanwise positions.

Figures 3, 4, and 5 compare the calculated blade surface

static pressure distributions {normalized by inlet total pres-

sure} at 13.3, 50, and 86.7 percent span with the exper-

imental data produced by Goldman and Seasholtz. 2° The
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Fig. 1. Computational grid for the Annular Cascade.
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Fig. 2. Convergence history for the multigrid calculation.
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